Automatic Gait Recognition by Multi-projection Analysis
نویسنده
چکیده
Human identification at a distance by analysis of gait patterns extracted from video has recently become very popular research in biometrics. This paper presents multi-projections based approach to extract gait patterns for human recognition. Binarized silhouette of a motion object is represented by 1-D signals which are the basic image features called the distance vectors. The distance vectors are differences between the bounding box and silhouette, and extracted using four projections to silhouette. Based on normalized correlation on the distance vectors, gait cycle estimation is first performed to extract the gait cycle. Second, eigenspace transformation is applied to time-varying distance vectors and the statistical distance based supervised pattern classification is then performed in the lower-dimensional eigenspace for human identification. A fusion strategy developed is finally executed to produce final decision. Experimental results on four databases demonstrate that the right person in top two matches 100% of the times for the cases where training and testing sets corresponds to the same walking styles, and in top three-four matches 100% of the times for training and testing sets corresponds to the different walking styles.
منابع مشابه
Multilinear Tensor-Based Non-parametric Dimension Reduction for Gait Recognition
The small sample size problem and the difficulty in determining the optimal reduced dimension limit the application of subspace learning methods in the gait recognition domain. To address the two issues, we propose a novel algorithm named multi-linear tensor-based learning without tuning parameters (MTP) for gait recognition. In MTP, we first employ a new method for automatic selection of the o...
متن کاملTwo-dimensional approximately harmonic projection for gait recognition
This paper presents a two-dimensional approximately harmonic projection (2DAHP) algorithm for gait recognition. 2DAHP is originated from the approximately harmonic projection (AHP), while 2DAHP offers some advantages over AHP. 1) 2DAHP can preserve the local geometrical structure and cluster structure of image data as AHP. 2) 2DAHP encodes images as matrices or second-order tensors rather than ...
متن کاملAutomatic Gait Recognition by Symmetry Analysis
We describe a new method for automatic gait recognition based on analysing the symmetry of human motion using the Generalised Symmetry Operator. This approach is reinforced by the psychologists view that gait is a symmetrical pattern of motion and results show that gait can indeed be recognised by symmetry analysis. 2003 Published by Elsevier Science B.V.
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملDynamic Biometrics Fusion at Feature Level for Video-Based Human Recognition
This paper proposes a novel human recognition method in video, which combines human face and gait traits using a dynamic multi-modal biometrics fusion scheme. The Fisherface approach is adopted to extract face features, while for gait features, Locality Preserving Projection (LPP) is used to achieve low-dimensional manifold embedding of the temporal silhouette data derived from image sequences....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006